Thursday, March 17, 2011

Rainbow Question with the LAs

The activity went really well. Partially because I did a better job facilitating, but also because my class is already comfortable with me, with each other, and with doing science.

I was able to stick to my time schedule. I was able to facilitate well. Writing down ideas on the board help immensely. We laughed a lot.

Here are the ideas and questions we generated:
  • What do we mean by color? - primary colors, crayon colors, secondary colors?
  • Where is brown? Is it there? Isn't brown from mixing colors?
  • If white light has all colors, why don't we experience seeing all the colors when we see white light?
  • Is this question being asked to like a scientist or like an artist? It seems like that would matter
  • What about black? Is black a color? It seems like its the absence of color? But then again, there are black crayons.
  • What about neon colors? Are they in the rainbow? What makes something neon?
  • Doesn't a rainbow have all the light colors, because it breaks it up like a prism.
  • Isn't purelight ROYGBIV?
  • In ROYGBIV, Yellow + Blue = Green, and that makes sense because green is between yellow and blue. But Blue + Red = Purple doesn't make sense because violet is on the end, not in between red and blue.
  • What about a blind person? Would they just see the rainbow in grays? Does that mean gray is in the rainbow?
  • Can you be underneath a rainbow? Can you see a rainbow from above? Yes, I've seen rainbows from above
  • What about double rainbows? How does that work?
  • When people look at a rainbow from different angles, can they all see it? If so, do they all see the same rainbow?
  • When you mix paint colors you get poopy brown, but when you mix all the light you get white light. Why?
  • Absorbance vs transmission? Doesn't that matter?
  • How do we see? Do we see what's reflected or what's absorbed?
  • What's a shade? Are shades in the rainbow? Can rainbows come in different shades? Would the rainbow be a lighter shade on a sunnier day? Would pollution effect the color of the rainbow? Isn't a shade like when you add white to it.
  • What is the wave length of brown? If we know that, we would know where it goes in the rainbow
  • Since rainbow is the diffraction of light through water? Does the color of the rainbow depend upon properties of water?
  • Is pink in the rainbow?
  • Don't we see color because we had rods in our eyes?
  • How does the brain interpret color?
  • Can a color blind person use 3D glasses?
  • How do 3d glasses work? Old vs New ones?
  • How does turning a color photo into a black-and-white photo work? How does black and white TV decide to make colors into different shades of gray?
  • How does gray work? If white is all the colors, and black is no colors? What why does having less of "everything" look gray?
  • Does needing glasses to see influence the experience of seeing color?
  • Does my "anti-glare" glasses that look blue-ish change my experience of color? Like more blue? Or does my brain correct for that over time? We've heard that when you wearupside down glasses you're brain corrects for the flip. Would it correct for color, too?
  • Can you create colors that don't exist yet?
  • Turquoise - it seems like it should be a mix of blue and green, and therefore be in between blue and green. But it doesn't look like right. It looks like a lighter shade. Which raises the question again of "are shades in the rainbow?"
  • Red-violet seems like it can't be in the rainbow because red and violet aren't next to each other. But we can see red violet. What if we could bend the rainbow in a circle? Would we get red-violet?
  • Red-violet is like the color of a plum. So it must be a color, because it exists. If it exists, does it have to be in the rainbow?
  • It seems like white and black aren't in the rainbow, and therefore gray can't be in the rainbow.
  • If brown has a frequency it's in the rainbow, if not then it's not in the rainbow.

Afterwards we talked about three questions:
  1. What makes a science conversation interesting to you?
  2. What helps in a science class to keep a science conversation interesting? (What did we do as a group? What did Brian do as a teacher? What features of the lesson helped?)
  3. What's something from the reading on argumentation that relates to our activity together?
This went well also. But not as well as I would have liked. I think my students wanted to keep talking about colors, so it was kind of a drag to stop and talk about teaching. ;)

For what makes a science conversation interesting, they included:
  • having relevant everyday experiences to draw on
  • having a diversity of opinions and people
  • having a culture of trust already established
  • having fun and laughing
  • Being challenged
  • Making progress, getting somewhere
  • Feeling like part of a group but also an individual
  • on listening and sharing, not just waiting to talk

No comments:

Post a Comment